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ABSTRACT 
 

This document is a tutorial on frequency stabil-

ity analysis using as its basis the Stable32 pro-

gram and its documentation that is freely avail-

able from the International Electrical and Elec-

tronic Engineers (IEEE) Ultrasonics, Ferroelec-

trics, and Frequency Control (UFFC) Society.  It 

guides the reader through various techniques for 

quantifying the stability of a frequency source in 

the time and frequency domains, providing in-

formation about both the theoretical background 

and practical methods for such an analysis. 

 

1 INTRODUCTION 
 

We start with an introduction to the Stable32 

program and some frequency stability terminol-

ogy. 

 

1.1 Introduction 
 

See: §1, [6], [9], [10], [14], [16], [22], 

[26], [27], [36], [37], [48], [52]
1,2

 
 

This tutorial is intended to extend the 

knowledge of a casual Stable32 user toward a 

more complete understanding of the techniques 

                                                 
* The author of this tutorial is the developer of the Sta-

ble32 program for frequency stability analysis. 
1
 Annotations marked with § refer to the Handbook of 

Frequency Stability Analysis, and those inside square 

brackets [] refer to references at the end of this document.  

Open the Handbook from the Stable32 Help menu and 

keep it open as you read this tutorial. 
2
 Suggested references are shown inside boxes below 

some section headings. 

of frequency stability analysis.  It presumes that 

the reader has already obtained and installed a 

copy of the Stable32 program and its documen-

tation
3
, and that he/she has, at a minimum, fol-

lowed the initial startup steps that demonstrate 

the basics of its operation in its Welcome screen 

and included test data
4
. 

 

The tutorial then leads a Stable32 user through a 

number of examples emphasizing analysis tech-

niques rather than program operation.  A key 

aspect of the tutorial is the program’s ability to 

generate power law noise as test data to use for 

exploring the various analysis methods. 

 

Before going any further, we should say that 

what we are talking about is really frequency 

instability, but, of course, you know that. 

 

Since you are interested in learning more about 

frequency stability analysis, you have no doubt 

heard about and probably used the Allan vari-

ance, AVAR, (or its square root, the more 

commonly-used form, the Allan deviation, 

ADEV).  But there’s much more to frequency 

stability analysis than that, as this tutorial will 

show. 

 

This document contains basic information about 

most aspects of a frequency stability analysis, 

                                                 
3
 Stable32 can be downloaded at: 

https://ieee-uffc.org/frequency-control/frequency-control-

software/stable32/. 
4
 You can reactivate this dialog by setting the 

ShowWelcome flag in the [Preferences] section of the 

Stable32.ini file to 1. 

mailto:bill@wriley.com
https://www.nist.gov/publications/handbook-frequency-stability-analysis
https://www.nist.gov/publications/handbook-frequency-stability-analysis
https://ieee-uffc.org/frequency-control/frequency-control-software/stable32/
https://ieee-uffc.org/frequency-control/frequency-control-software/stable32/
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with references to further details (e.g., the 

math).  Exercises are included for many topics 

to stimulate further study.  It is recommended 

that, after reading about a topic in this docu-

ment, the reader consult the referenced section 

of the Handbook, the references cited herein, 

and then their referenced documents as you get 

deeper into these topics. 

 

Most analysts who use the techniques of fre-

quency stability analysis have frequency sources 

they wish to characterize and measuring systems 

for doing so.  But all users of precision frequen-

cy sources need to understand those techniques, 

and hands-on experience with them, using actu-

al or simulated data, is the best way to become 

familiar with them.
5
 

 

Do the exercises – don’t just look at them.  That 

way you’ll learn more and be able to try differ-

ent things.  Treat this document as a workbook. 

 

1.2 Documentation 
 

The essential documentation for this tutorial is 

included with the Stable32 program, most im-

portantly its User Manual
6
 [36], the built-in 

context-sensitive help, and the associated Hand-

book of Frequency Stability Analysis
7
.  The Us-

er Manual and Handbook can be accessed via 

the program’s Help menu.  In addition, there are 

a number of papers in the Stable32 program 

folder and on the stable32.com web site that ad-

dress specific topics related to frequency stabil-

ity analysis (see References).  All those docu-

ments contain many references to further infor-

mation. 

 

1.3 The Stable32 Paradigm 
 

Since we will be using the Stable32 software to 

support this tutorial, it seems wise to first de-

scribe the way that program is organized. 

                                                 
5
 We highly recommend attending one of the annual NIST 

Time and Frequency Seminars.  The tutorials at the annu-

al Frequency Control Symposium, European Frequency 

and Time Forum, and the ION PTTI Meeting are also 

opportunities to learn more about frequency control and 

stability analysis. 
6
 Including its current addendum, if any. 

7
 References to Handbook sections are shown as §. 

The basic paradigm is a pair of phase and fre-

quency arrays whose data can be entered from a 

disk file or generated internally.  Stable32 is a 

batch processing program – it does not directly 

support clock measurements.  The phase and 

frequency arrays need not both be filled.  If they 

are, they generally, but not necessarily, hold 

equivalent data (as indicated by a blue infinity-

like symbol).  The contents of these arrays are 

shown in small plots at the bottom of the screen 

(see Figure 1), along with their basic properties.  

Conversions are supported between phase and 

frequency data. 

 

 
 

Figure 1.  Stable32 Status Bar 

 

A useful feature during an analysis step that 

changes the contents of these arrays is to acti-

vate the Tabs function so that the previous data 

is saved and can be restored. 

 

1.4 Frequency Stability Terminol-

ogy 
 

See: §3 
 

The time and frequency field employs a stand-

ard terminology to describe the stability of a 

frequency source [6]. 

 

A frequency source will have a certain nominal 

output frequency, f0, and an actual output fre-

quency, f, as measured with adequate precision 

against a suitable absolute standard via a tracea-

ble process.  The output frequency is generally 

denoted by its fractional frequency deviation, 

Δf/f0 = (f – f0) / f0.  For example, for f0 = 10 

MHz, if the actual frequency is f = 10.000001 

MHz, the frequency deviation is Δf  = 1 Hz, 

and the fractional frequency offset is 1 ppm, de-

noted as 1x10
-6

, 1pp10
6
, or 1e-6, which are di-

mensionless quantities (not Hz) and are general-

ly written simply as Δf/f and denoted as a func-

tion of time by the symbol y(t).  The corre-

sponding phase value as a function of time is 

denoted as x(t) and has units of seconds. 

 

1.5 Phase and Frequency Data 
 

See: §3 
 

http://www.stable32.com/Manual154.pdf
http://www.stable32.com/Handbook.pdf
http://www.stable32.com/Handbook.pdf
http://www.stable32.com/
https://www.nist.gov/pml/time-and-frequency-division
https://www.nist.gov/pml/time-and-frequency-division
https://ieee-uffc.org/frequency-control/symposia/
https://www.eftf.org/home/
https://www.eftf.org/home/
https://www.ion.org/ptti/
http://www.stable32.com/Stable32%20Version%20162%20User%20Manual%20Addendum.pdf
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Frequency stability analysis generally applies to 

equally-spaced discrete phase or frequency 

measurements (a time series) taken at a particu-

lar measurement interval denoted by the lower-

case Greek letter tau (). Other words used for 

this quantity are sampling interval, measure-

ment time, sampling time or averaging time. The 

measurement and sampling terms are usually 

associated with the measurement process itself, 

while the averaging time applies to the analysis. 

The basic measurement interval is often denoted 

as 0 while the analysis averaging time is simply 

called .  As noted above, phase data have units 

of seconds, while frequency data are dimension-

less
8
 fractional frequency.  

 

1.6 Data Averaging 
 

See: §3, [5] 
 

Phase and frequency data taken at one sampling 

interval can be averaged to a longer tau (the op-

posite cannot be done, of course).  Phase data 

are “averaged” by simply omitting the interme-

diate points, while frequency data are averaged 

to a longer tau by ordinary algebraic averaging.  

There are some subtleties associated with those 

processes [5], but for the most part they are 

straightforward (and supported by the Stable32 

program).  Data averaging is done transparently 

during a stability run, and may be done to a data 

file as it is read or later as a way to speed an 

analysis or save storage space when a finer time 

resolution is not needed. 

 

1.7 Some Statistical Terminology 
 

See: §2 
 

Frequency stability analysis involves both de-

terministic and stochastic (random) factors.  Ex-

amples of the former are frequency offset and 

drift, while statistics and spectral densities are 

employed to describe the latter.  The noise 

properties can be examined using measures like 

variances in the time domain and power spectra 

in the frequency (Fourier) domain. 

 

                                                 
8
 Units of Hz/Hz are sometimes associated with fractional 

frequency values, but that seems rather awkward. 

 

In the time domain, we analyze phase or fre-

quency time series data that is generally as-

sumed to exist “forever” and whose properties 

remain constant over time (are stationary)
9
.  The 

unlimited extent of the data means that we apply 

sampling rather than population statistics.  If the 

behavior of the frequency source does change 

due to jumps, etc. then we must consider that 

there has been a regime change. 

 

In the frequency domain, the power spectrum of 

the frequency or phase variations is usually 

modeled as an integer power law function. 

 

Alternatively, one can analyze the phase or fre-

quency variations by their autocorrelation func-

tion.  For white noise, adjacent samples are un-

correlated.  For more divergent flicker, random 

walk, and random run noise, their samples are 

correlated over increasing distances. 

 

2 STABILITY ANALYSIS 
 

Next we cover some of the basics of frequency 

stability analysis. 

 

2.1 Some Analysis Basics  
 

See: §2, [10] 
 

When analyzing the variations of a time series, 

it is important to distinguish between a statistic 

(e.g., the Allan variance) and its estimator, the 

computational formula used for its calculation.  

For example, while AVAR is defined as the ex-

pected value of an expression most similar to its 

original 1
st
 differences of frequency non-

overlapped estimator, it is best estimated by the 

more efficient fully overlapping formula since 

that provides more degrees of freedom and 

higher confidence.  Both of those AVAR esti-

mators are unbiased.  Other even higher confi-

dence biased estimators are available (e.g., the 

Total and Thêo1 statistics), or when results are 

needed at larger averaging factors, but they may 

require bias corrections that depend on the noise 

type (Stable32 does those automatically). 

 

                                                 
9
 The average frequency of a divergent flicker or random 

walk FM process is not stationary. 
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The Modified Allan variance is a special pur-

pose statistic involving phase averaging that is 

used mainly for its ability to distinguish be-

tween white and flicker PM noise.  It finds wid-

er use as the basis for the Time variance, 

TVAR, which is a popular estimator for clock 

error caused by noise. 

 

The Hadamard variance, HVAR, is another spe-

cial purpose statistic that is based on the 2
nd

 dif-

ferences of frequency.  Although providing 

lower confidence than AVAR, it has the ad-

vantage of convergence for more divergent 

noise types, and, generally more importantly, 

ignores linear frequency drift. 

 

Some basic principles to keep in mind: 
 

1. Frequency is the rate of change of phase. 

2. One converts phase data to frequency 

data by taking 1
st
 differences. 

3. One converts frequency data to phase 

data by numerical integration. 

4. The exponent of power law noise is in-

creased by 2 by differencing which 

makes it less divergent and raises its rel-

ative high frequency content. 

5. The exponent of power law noise is de-

creased by 2 by integration which makes 

it more divergent and lowers its relative 

high frequency content. 

6. White noise has a flat spectral density 

versus Fourier frequency. 

7. Noise spectra can apply to either phase 

or frequency data, whose power law ex-

ponents differ by 2. 

8. Always follow R.W. Hamming’s ad-

monition that “the purpose of computing 

is insight, not numbers” [3]. 

 

2.2 Power Law Noise 
 

See: §3.2 
 

Power law noise having an integer exponent, α, 

between -4 and +2 corresponding to noise types 

from White PM to Random Run FM have been 

found to characterize the behavior of all types of 

frequency sources
10

.  Some of these noise types 

                                                 
10

 Plots of various power law noise types are shown in 

Table 1 of the Handbook. 

correspond directly to physical mechanisms in 

those devices (e.g., W FM in passive atomic 

frequency standards), while others are simply 

reasonable models for their behavior. 

 

In addition, integer power law noise follows the 

+2 increase in α that corresponds to the first dif-

ferencing during the conversion between fre-

quency and phase data, and vice versa.  So, for 

example, W FM noise is the same as RW PM 

noise (both =0). 

 

The power law noise type is sometimes referred 

to by its color (e.g., white for a flat spectrum, 

pink for a 1/f or flicker spectrum, red for an f
-2

 

spectrum, brown for an f
-2

 random walk spec-

trum, and black for an f
-3

 flicker walk spectrum) 

although this terminology is mainly used only 

for white noise in the frequency stability analy-

sis field. 

Examples of the most common types of power 

law noise are shown in Figure 2. 

 

  
White Flicker 

  
Flicker+RW Random Walk 

 

Figure 2.  Common Types of Power Law Noise 
 

The various noise types can apply to either phase or fre-

quency data.  Note that power law noise doesn’t neces-

sarily have to have an integer exponent – mixtures of 

noise types are possible. 
 

 

Table 1. 

Summary of Stability Plot Noise Slopes 
 

Noise 

Type 
 Stability Plot Noise Slope 

ADEV MDEV TDEV 

W PM +2 -1 -3/2 -1/2 

F PM +1 -1 -1 0 

W FM 0 -1/2 -1/2 +1/2 

F FM -1 0 0 +1 

RW FM -2 +1/2 +1/2 +3/2 
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2.3 Noise in Frequency Sources 
 

The type of noise associated with each type of 

frequency source depends on the physical prin-

ciples of its operation
11

.  The source may be an 

active oscillator or a passive device like most 

atomic frequency standards where a frequency 

lock loop locks a crystal oscillator to an atomic 

reference.  The dominant noise may vary with 

the spectral region (e.g., near or far from the 

carrier) or averaging time (short, medium, or 

long-term stability). 

 

The simplest case is probably a classic rubidium 

gas cell or cesium beam tube passive atomic 

clock, or a passive H-maser, where white noise 

at its detector maps over to frequency variations 

in its frequency lock loop for averaging times 

longer than the loop time constant.  Baseband 

flicker noise isn’t much of an issue because the 

frequency lock servo operates with an audio 

frequency error signal.  At shorter averaging 

times, the free-running crystal oscillator deter-

mines the stability.  At much longer averaging 

times, environmental sensitivities and internal 

aging mechanisms may impose a so-called 

“flicker floor”, beyond which the stability wors-

ens.  Behavior in that region probably isn’t driv-

en by any noise source in the usual sense of the 

word but rather by the operating environment. 

 

Active oscillators like crystal oscillators and ac-

tive hydrogen masers have an even more com-

plex combination of noise sources.  At low Fou-

rier frequencies within the oscillator loop band-

width, phase changes become frequency chang-

es.  Active device 1/f flicker noise becomes f
-3

 

noise very close to the carrier, and device white 

noise becomes f
-2

 noise further from the carrier.  

Outside the oscillator loop bandwidth, the de-

vice 1/f and white noise is seen directly as addi-

tive noise, with the latter setting the far out 

noise floor.  In the time domain, the more diver-

gent noises tend to make the frequency record of 

a crystal oscillator rather un-white with flicker 

and random walk fluctuations.  Likewise, the 

noise of an active H-maser tends varies from 

white/flicker PM at short averaging times to 

                                                 
11

 See any reference to the Leeson model [4]. 

more divergent random walk/flicker walk FM at 

longer averaging times (albeit very small). 

 

The noise of time transfer systems is usually 

dominated by either white or flicker PM noise, 

while the noise floor of most clock measuring 

systems is set by their quantization or other 

white PM noise that improves with the averag-

ing time. 

 

2.4 Noise Generation 
 

See: §8 
 

The Stable32 Noise function can generate power 

law phase and frequency data to support the 

study of frequency stability analysis techniques.  

The resulting noise data has a selectable number 

of points, tau, power law noise type and level, 

and can include a frequency offset and/or drift, 

plus a sine component of selected level and pe-

riod.  The Noise dialog box is shown in Figure 

3. 

 

A different set of noise data is generated each 

time the function is invoked.  This is usually 

convenient when performing a simulation, but it 

also means that your results will be slightly dif-

ferent than the examples herein. 

 

You can generate and plot various types of inte-

ger power law noise using the Noise and Plot 

functions of Stable32.  You’ll notice that all 

white noise looks more-or-less the same, while 

there is a large variation in the appearance of the 

more divergent noise types
12

. 

 

                                                 
12

 The (little-used) Stable32 Audio function, found under 

the Utility menu, allows phase or frequency noise data to 

be converted to a .wav file and listened to. White PM fre-

quency noise sounds like frying bacon. White FM fre-

quency noise sounds like the noise from a radio between 

stations. Random walk FM frequency noise has a low 

rumbling sound.  One can also examine the noise wave-

form with an oscilloscope or audio FFT analyzer. 

https://en.wikipedia.org/wiki/Leeson%27s_equation


 6 

 
 

Figure 3.  Noise Dialog Box 
 

This function can be used to generate power law 

phase and frequency data having the desired proper-

ties that can be used as test data for a frequency sta-

bility analysis. 

 

Figure 4 shows the results of ten sets of 513 

points of simulated white FM noise having a 

nominal ADEV of 1.0 at their sampling tau. 

 

  

  

  

  

  
 

Figure 4.  Ten Sets of Simulated W FM Noise 
 

The ADEV and standard deviations values are nearly 

the same as expected for white FM noise.  In all cases 

the ADEV values are well within the double-sided 95% 

confidence factor range (per the Sigma function not 

shown). 

 

The Stable32 distribution package includes sev-

eral sets of phase and frequency data, but these 

are quite small and do not represent a variety of 

noise types.  Thus, for the purposes of this tuto-

rial, the reader should be prepared to generate 

appropriate data sets to illustrate various cases. 

 

By the way, if you should ever need to generate 

samples of the even more divergent Flicker 

Walk FM (=-3) and Random Run FM (=-4) 

noise types, that is quite easy to do with the 

technique used in §3.4 and §8.3 of the Hand-

book.  Generate some F FM noise phase data, 

save it, read it in again as FW FM frequency 

data, and convert it to FW FM phase data.  

Likewise, generate some RW FM noise phase 

data, save it, read it in as RR FM frequency da-

ta, and convert it to RR FM phase data.
13

  

 

2.5 Noise Identification 
 

See: §5.5 
 

Many aspects of a frequency stability analysis 

require identification of the dominant noise type 

of the phase or frequency data under investiga-

tion, and several techniques have been devised 

to estimate the power law noise type automati-

cally.  Therefore the analyst generally does not 

have to worry about doing that him/herself.  If 

you are interested in the methods used to ID 

power law noise, more information is available 

about that in Section 5.5 of the Handbook.  One 

of the most effective uses the Lag 1 autocorrela-

tion function [1]. 
 

2.6 Data Plotting 
  

See: §10.12 
 

Data plotting is a basic step for any frequency 

stability analysis.  Visual examination of the 

phase and frequency data provides insight into 

its general character, and guides the rest of the 

analysis.  A data plot will reveal any outliers, 

and, at various averaging factors, will show the 

noise characteristics, drift trend, and any anoma-

lies.  A formal, annotated data plot is not always 

necessary, but visual inspection should be the 

                                                 
13

 Note that the saved files should not have headers.  Note 

also that the Stats function will not ID these very diver-

gent noise types, but that the Autocorrelation function 

will. 
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first step in any frequency stability analysis
14

.  

This tutorial contains many examples of phase 

and frequency data plots. 

 

2.7 Why the Allan Variance? 
  

See: §5.2.1, [43] 
 

The standard variance and its square root, the 

standard deviation is widely understood and 

used as a way to describe the scatter of a statis-

tical variable.  It was found, however, as you 

shall soon see for yourself, that it fails to ade-

quately describe the more divergent forms of 

power law noise that commonly occur in fre-

quency sources.  For white noise (e.g., W FM) 

it’s fine.  But for flicker and other divergent 

noise it doesn’t converge – the value grows with 

the number of samples analyzed.  The Allan 

variance/deviation was devised in the early 

1960’s to solve that problem by using the first 

differences of the fractional frequency devia-

tions as its basis.  Let’s see for ourselves: 

 

Using Stable32, generate sets of 100, 1000, 

10,000 and 100,000 samples of flicker FM 

noise, and calculate the standard and Allan de-

viations for each.  It doesn’t matter what noise 

level you use or its tau – let’s use 1.0 for both.  

Generate the noise with the Noise function, ana-

lyze it with the Overlapping ADEV Sigma func-

tion, record and compare the results.  Here’s an 

example: 

 

# 

Samples 

Standard 

Deviation 

Allan 

Deviation 

100,000 2.80 1.20 

10,000 2.71 1.20 

1000 2.23 1.23 

100 1.88 1.29 

 

As you can see, the standard deviation grows 

with the number of samples while the ADEV 

remains nearly constant
15

.  This behavior is 

shown graphically in Figure 5. 

 

                                                 
14

 Stable32 includes small phase and frequency data plots 

in its status bar, and offers the Stats function for more 

detailed data inspection. 
15

 You can see this effect plotted in Figure 1 of the Hand-

book and herein as Figure 5. 
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Figure 5.  Convergence of Standard and Allan 

Deviation of Flicker FM Noise. 
 

The standard deviation (blue) depends on the sample size 

for F FM noise, while the Allan deviation (red) does not 

and is therefore a better measure of frequency stability. 
 

 

3 EXERCISES 
 

Now it’s time to try some of the techniques of 

frequency stability analysis using the Exercises 

listed below. 

 
 

Table 2. 

Frequency Stability Analysis Exercises 
 

# Topic 

1 Generate and Analyze Power Law Noise 

2 Confidence Intervals 

3 Compare PSD Plots 

4 Check Spec Consistency 

5 Use MVAR to Distinguish Between White 

and Flicker PM Noise 

6 HDEV Rejects Frequency Drift 

7 HDEV Has Wider Error Bars Than ADEV 

8 Try the Dynamic AVAR Function 

9 Try the Autocorrelation Function 

10 Use an Autocorrelation Scatter Plot to 

Show Data Quantization 

11 Frequency Drift Model 

12 Find and Remove Outliers 

13 Frequency Jumps 

 

3.1 Power Law Noise Characteris-

tics  
 

See: §3.2 
 

A good first exercise is to use the Stable32 

Noise function to generate and save five 4097-
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point integer power law noise phase and fre-

quency data sets (10 files) and examine them 

with the Plot, Run and Power functions to ob-

serve their properties in both the time and fre-

quency domains.  The non-zero Sigma values 

can be set arbitrarily to 1.0 and the Tau to 1, 

with no frequency offset or drift, and no sine 

component.  One can use filenames like 

RW_FM, F_FM, W_FM, F_PM, and W_PM 

with .phd and .frd extensions to identify them. 

 
 

 

Exercise #1:  Generate and Analyze Power 

Law Noise 
 

1. Launch the Noise function and generate a 

set of 4096 (# points=4097) of W PM noise.  

Use a value of 1.0 for the noise amplitude 

and 1 for the tau, and omit any drift or si-

nusoidal terms.  Or, if you wish, you can set 

the amplitude to a more realistic value. 

2. Examine the noise in the small plots on the 

status bar or with the Stats function.  If you 

wish, launch the Plot function and produce 

and annotate larger plots.  You may also 

want to print them. 
 

 
 

 
 

3. Save the resulting values as both phase 

(W_PM.phd) and frequency (W_PM.frd) da-

ta files at a convenient location on disk.  

You might also want to save these data sets 

in Tabs for easy recall. 

4. Repeat the same process for the other four 

power lay noise types (F PM, W FM, F FM 

& RW FM). 
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5. Produce ADEV plots for these five noise 

types.  Include noise fits and observe their 

slopes. 
 

 
 

 
 

 
 

 
 

 
 

6. Produce L(f) PSD plots for these five noise 

types.  Include power law fits and note their 

slopes. 
 



 10 

 
 

 
 

 
 

 
 

 
 

7. Produce autocorrelation function plots for 

the five types of phase data. 
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8. Notice how the data becomes increasingly 

correlated at longer lags as the data type be-

comes more divergent, and that the noise 

type is accurately identified by the Lag 1 

ACF. 
 

 

That’s a lot of work, but it will provide consid-

erable insight into the behavior of power law 

noise and the relationship between phase and 

frequency data, and time and frequency do-

mains.  A copy of the Chart of Frequency Sta-

bility Analysis included with Stable32 can be 

helpful
16

. 

 

3.2 Confidence Intervals  
  

See: §5.3, [7], [25] 
 

The results of a stability analysis such as the 

Allan deviation should include an assessment of 

the confidence that its value is correct.  This is 

usually done by showing error bars along with 

the nominal value, where the maximum and 

minimum limits correspond to a certain confi-

dence factor
17

. 

 

It is always better to show even approximate 

error bars than none at all.  Simple error bars are 

typically set using a factor of  1/N, where n is 

the number of data points.  

 

The setting of confidence limits and error bars 

for a particular stability variance is a bit compli-

cated, but fortunately the details can be hidden 

from the analyst by appropriate software like 

                                                 
16

 See also Figures 3 and 31 of the Handbook. 
17

 68% double-sided confidence limits are generally used. 

http://www.stable32.com/Stability%20Chart.pdf
http://www.stable32.com/Stability%20Chart.pdf
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Stable32.  The span of the error bars indicate the 

“variance of a variance” and therefore follow 

Chi-squared statistics that depend on the number 

of equivalent degrees of freedom (see §5.4) that 

applies to the analysis.  That, in turn, depends 

on the variance type, the noise type, the number 

of data points used, and, of course, the chosen 

confidence factor.  Of these attributes, the num-

ber of Χ
2
 degrees of freedom is the hardest to 

determine, but formulae have been developed 

for doing so, either analytically or empirically 

via simulation
18

. 

 

The most important observations about these 

confidence intervals and error bars are: 

 

1. The progression from classic to overlapping 

ADEV, to the Total and Thêo1 statistics has 

significantly improved the confidence in 

stability determinations (see Higher-

Confidence Statistics below and Handbook 

Figure 1). 

2. The error bars grow with larger averaging 

factors as the number of analysis points be-

comes smaller. 

3. The number of data points (and measure-

ment run time) required is about 5 times 

shorter for Thêo1 than for the original 

ADEV. 

4. The Χ
2
 error bars are asymmetric, larger in 

the upper direction. 

5. Most stability analyses use double-sided 

68% (1-sigma) confidence intervals. 

6. Stability results are usually reported as their 

nominal values. 

7. The Stable32 software hides most of this 

complexity. 

 
 

Exercise #2:  Confidence Intervals 
 

1. Generate some simulated power law noise of 

your choosing using the Noise function.  

Here we show 512 points of W FM noise. 

2. Open the Sigma function, choose and calcu-

late a variance type, and examine the items 

related to confidence intervals.  Here we 

show the overlapping Allan variance. 
 

                                                 
18

 The confidence intervals details are shown in the Sta-

ble32 Sigma function. 

 
 

3. We see that, for these 511 analysis points, 

the number of equivalent Χ
2
 degrees of free-

dom is about 400 (due to the overlapping 

samples used), and, for a 95% confidence 

factor, the corresponding values from the Χ
2 

distribution are about 457 and 347, which 

determines ADEV error bars of about 0.98 

and 1.13 around a nominal value of about 

1.06. 

4. You can see these error bars on the corre-

sponding ADEV Run function table and 

plot. 
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5. Observe the same information for different 

variance types, noise types, numbers of data 

points, etc. 
   

 

3.3 Higher-Confidence Statistics  
  

See: §2.1, [46] 
 

Considerable progress has been made since the 

introduction of the original Allan variance to-

ward methods for improving the confidence es-

timators for it and related statistics.  The origi-

nal Allan variance was followed by its Overlap-

ping version, the Total variance and then the 

Thêo1 along with its Overlapping/Thêo1 hybrid, 

ThêoH.  Total versions of the Modified, Time, 

and Hadamard variances have also been de-

vised.  Figure 6 shows this progress for the Al-

lan variance family.  In cases where long meas-

urement times are needed (e.g., 1-month runs), 

the savings in time and cost can be considerable. 

 

  
 

Original Allan 
 

 

Overlapping Allan  
 

  
 

Total 
 

 

Thêo1 
 

Figure 6  Progress in Frequency Stability Anal-

ysis 
 

The confidence improves, the error bars shrink and the tau 

range expands as the stability measure evolves from the 

original Allan to the Overlapping Allan, Total and Thêo1 

statistics. 
 

 

3.4 Spectral Analysis 
  

See: §5.3, [2], [28], [29], [30], [33], [49] 
 

The field of spectral analysis is large and com-

plex, and plays an important part in frequency 

stability analysis.  Unlike most spectral analysis 

however, the emphasis is on characterizing 

noise rather than discrete components.  And un-

like the calculation of statistics such as the over-

lapping Allan variance, there is no standard 

methodology for spectral analysis – it is a com-

bination of art and science.  While the relation-

ship between a time series and its spectrum is 

exact and invertible using the Fourier transform 

or an FFT, a spectral analysis involves addition-

al considerations such as windowing (see §6.5) 

and averaging (see §6.6) for which there is no 

single correct methodology. 

 

Some aspects of spectral analysis may not be 

obvious or intuitive at first.  The sampling inter-

val, , of the time domain data determines the 

upper Fourier frequency, 1/2, of the spectrum 

per the Nyquist criterion of 2 samples/cycle.  

Similarly, the number of data points, n, deter-

mines the Fourier frequency spacing, 1/n, and 

the lower Fourier frequency extent of the spec-

trum.  More data does not reduce the variance of 

the spectrum; one must use averaging to accom-

plish that.  Because the Fourier transform is lin-

ear in frequency, most of the spectral points are 

at the high frequency end of a log frequency 

plot.  Some sort of log averaging or segmenta-

tion can improve that. Windowing (tapering) at 

the ends of the time series data is necessary to 

avoid Gibbs phenomenon distortion at low Fou-

rier frequencies, although matching the time se-

ries end points by removing a trend line and/or 

performing pre-whitening can help.  For the 

purposes of frequency stability analysis, it is 

important to get the magnitude and effective 

noise bandwidth of the spectrum correct. 

 

Frequency domain stability analysis uses several 

spectral measures for both phase and frequency 

data, and since they are all mathematically relat-

ed, conversions are possible between them (see 

§6.1 and §6.2).  For phase data, these are Sx(f), 

the spectral density of the time variations, 

sec
2
/Hz, S(f), the spectral density of the phase 

variations, rad
2
/Hz, and L(f), the SSB phase 

noise, dBc/Hz.  For frequency data, it is Sy(f), 

the spectral density of the fractional frequency 

variations, 1/Hz. 

 

https://en.wikipedia.org/wiki/Gibbs_phenomenon
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Stable32 supports all of these spectral measures 

and attempts to present them with reasonable 

default settings and in their proper engineering 

units.  The frequency stability analysis student 

can use those plots to compare them and ob-

serve the spectral characteristics of various 

power law noises. 

 

Try the various PSD plot types and their many 

options for windowing, smoothing and averag-

ing.  Try pre-whitening, filtering and trend re-

moval as ways to improve PSD analysis.  

 
 

Exercise #3:  Compare PSD Plots 
 

1. In this exercise, we will compare various 

measures of power spectral density. 

2. Generate 4096 points of white PM noise 

with the Noise function (set the # points to 

4097). The magnitude and tau can both be 

set to 1.0 since we only care about the noise 

type. 

3. Select the phase data. 

4. Launch the Power function. 

5. Select and plot the Sx(f) PSD plot. 

Observe the flat fit to the W PM noise with a 

power law exponent  near zero. 

Note: You may want to copy (Copy/Bitmap) 

and paste these PSD plots to more easily 

compare them. 

6. Close the plot. 

7. Select and plot the S(f) PSD plot. 

Observe the flat fit to the W PM noise with a 

power law exponent  near zero. 

8. Close the plot. 

9. Select and plot the L(f) PSD plot. 

Observe the flat fit to the W PM noise with a 

slope near zero. 
 

 
 

10. Close the plot. 

11. Close the Power function. 

12. Select the frequency data. 

13. Launch the Power function again. 

14. Plot the Sy(f) PSD plot. 

15. Observe the power law exponent near +2.  

The 0 power law exponent of white PM 

noise is increased by 2 by the differencing 

that converts it to frequency noise (see 

§3.4).  
 

 
 

16. Close the plot. 

Try other power law noise types. 

 
3.5 Domain Conversions 

  

See: §7 
 

Conversions are possible between measures of 

frequency stability in the time and frequency 

domains.  While mathematically related, per-

forming those conversions can be quite compli-

cated (see §7) in general, but formulae are 

available for the case of common power law 

noise types (see §7.1), and the later conversions 
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are supported by the Stable32 Domain function.  

The power law model works for multiple noise 

sources in most cases because the phase noise 

falls off versus higher sideband frequency.  

However, it can be inapplicable for some com-

posite cases (e.g., where there is a narrowband 

filter in the source output).  

 

One important domain conversion application is 

to verify that the specifications of a frequency 

source are consistent between domains.  Phase 

noise specifications usually dominate for side-

band frequencies of 1 Hz and above while time 

domain specifications usually cover averaging 

times longer than 1 second, so the two domains 

only overlap at those edges.  But, increasingly, 

instruments are available to make time sub-

second time domain measurements. 

 
 

Exercise #4:  Check Spec Consistency 

 

1. Consider a 10 MHz rubidium frequency 

standard (RFS) that has a specified 1-second 

short-term stability (STS) of 1x10
-11

 and a 

specified phase noise of -80 dBc/Hz at 1 Hz 

from the carrier.  Are these time and fre-

quency domain values consistent? 

2. The RFS STS can be presumed to be based 

on white FM noise, e.g., 1x10
-11


-1/2
.  Enter 

that noise type and level, along with the 10 

MHz carrier frequency, into the Domain 

function as the time domain stability, and 

observe the corresponding frequency do-

main level of phase noise at 1 Hz, e.g., 

L(1)=-80 dBc/Hz. 
 

 
 

3. Yes, the specifications are consistent. 

4. If you wish, other aspects of domain conver-

sion, etc can be explored.  For example, 

change the carrier frequency to 100 MHz 

and you will see that the x10 multiplication 

has degraded the phase noise by 20 dB. 
 

 

3.6 Sampling Functions and Fre-

quency Response 
 

See: [5], [44], [45 
 

The time domain statistics used in frequency 

stability analysis involve the sampling of time 

series data in particular patterns that determine 

their impulse response and spectral properties in 

the frequency domain.  For example, the im-

pulse and frequency responses of the AVAR are 

shown in Figures 7 and 8 (other patterns and 

responses apply to the MVAR, HVAR and other 

statistics).  These sampling functions relate to 

their autocorrelations and other underlying 

properties, and they also apply to the way cer-

tain instruments make phase and frequency 

measurements. 

 



 16 

 
 

Figure 7.  Impulse and Frequency Response of 

the AVAR Sampling Function (From [44]. 

 

 
 

Figure 8.  Frequency Response of the AVAR 

(From [5]. 
 

The frequency response of AVAR looks like a ½-octave-

wide band pass filter. The peak in the response is at f ·τ = 

0.5, or at τ = 0.5/f = 0.5T, where f is a Fourier component 

of fractional frequency deviation y(t) and T is the period 

of that component. 

 

3.7 Sigma-Tau Plots 
  

See: §5.1 
 

The most common way to show the stability of 

a frequency source in the time domain is by 

means of a sigma-tau plot.  That is a log-log plot 

of some stability measure such as the Allan de-

viation versus averaging time.  A sigma-tau dia-

gram not only shows the stability as a function 

of the averaging time, but the slope of the plot 

indicates the type of power law noise that ap-

plies, as shown in Figure 9.  Similar relation-

ships apply to Modified and Time variances (see 

Figures 10 and 11).  The Stable32 Run function 

generates sigma-tau tables and plots for phase or 

frequency data. 
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Figure 9.  Sigma-Tau Diagram 
 

The slope of the log sigma versus log tau plot indicates 

the type of power law noise that applies. 
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Figure 10.  Mod Sigma-Tau Diagram 
 

The slopes for white and flicker PM noise are different in 

a Mod sigma-tau plot. 

 

 
 

Figure 11.  Time Sigma-Tau Diagram 
 

The slopes of the TDEV sigma-tau diagram are those of 

MDEV +1 reflecting its multiplication by . 
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An “All Tau” stability plot often provides the 

best information and is a form of spectral analy-

sis since it shows small ripples. 

 

3.8 L(f) Plots 
  

See: §6.3 
 

The most common way to show the stability of 

a frequency source in the frequency domain is 

by means of a L(f) plot
19

.  That is a plot of the 

SSB phase noise in logarithmic units of dBc/Hz 

versus log Fourier frequency in Hz.  The Sta-

ble32 Power function generates L(f) and other 

related power spectral plots for phase or fre-

quency data, as shown in Figure 12. 

 

Stable32 is mainly a time domain stability anal-

ysis tool in that it accepts that form of phase or 

frequency data.  It can, however, convert the 

time domain data into several forms of spectral 

plots. 
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Figure 12.  SSB Phase Noise Diagram 
 

The slope of the L(f) versus log f plot indicates the type of 

power law noise that applies. 

 

You will quickly see that the ADEV plots are 

identical for the same phase and frequency data.  

You can switch to the Octave or Decade option 

and see how the ADEV error bars increase at 

larger averaging factors as the number of sam-

                                                 
19

 The script L symbol that represents log SSB phase 

noise is commonly written as either L or £.  That notation 

was introduced by D. Halford.  

ples becomes smaller.  You can also change the 

confidence factor for the error bars. 

 

3.9 Choice of Variance Type  
 

See: §5.2, §10.13 
 

Stable32 offers a complete set of variance types 

that you can try and compare as discussed be-

low
20

. 

 

3.10 Standard Variance 
 

See: §5.2.1 
 

The standard variance and its square root, the 

standard deviation, are familiar statistical 

measures of variability.  Unfortunately, it does 

not converge for some of the power law noise 

types commonly associated with frequency 

sources, and is therefore not used for that pur-

pose. 

 

3.11 Allan Variance 
 

See: §5.2.2 
 

The Allan variance
21

 was devised as a way to 

avoid the non-convergence of the standard vari-

ance for flicker FM =-1) and other divergent 

noise types.  It, in effect, replaces comparisons 

against the average with 1
st
 differences of the 

frequency data, as we saw earlier in this tutorial. 

 

3.12 Overlapping Samples 
 

See: §5.2.3 
 

The original form of the Allan variance made its 

samples with a stride equal to the averaging fac-

tor thus using each value only once.  In contrast, 

the overlapping form of the Allan variance uses 

a stride of one as it moves through the data, 

thereby using each point multiple times in mak-

ing its samples.  While not completely inde-

pendent, these overlapping samples nevertheless 

contribute to a larger number of statistical de-

grees of freedom and improve the confidence of 

the estimate (see Handbook Figure 7).  The 

software hides this complexity from the user, 

                                                 
20

 As you read these various variance descriptions, please 

refer to the referenced Handbook sections for their math-

ematical and other details. 
21

 The Allan variance was devised by D.W. Allan in 1966. 

https://ieee-uffc.org/download/proceedings-of-the-ieee-special-issue-on-frequency-stability-february-1966/?wpdmdl=2272&ind=ZTY2MTAyMjEucGRm
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and the additional time required for the more 

complicated calculation is negligible. 

 

3.13 Overlapping Allan Variance 
 

See: §5.2.4 
 

The Allan variance, AVAR, and its square root, 

the Allan deviation, ADEV, is the most com-

monly specified and used measure of frequency 

stability, is recommended in most cases, particu-

larly its Overlapping form.  The original non-

overlapped version is now deprecated because it 

is a less efficient estimator, and is included in 

Stable32 mainly for historic purposes or when it 

is explicitly specified. 

 

The AVAR is based on the 1
st
 differences of the 

fractional frequency values, or equivalently, 2
nd

 

differences of the phase. 

 

3.14 Modified Allan Variance 
 

See: §5.2.5 
 

The Modified Allan variance
22

, MVAR, and its 

square root, the Modified Allan deviation, 

MDEV, use phase averaging in their estimation 

formula.  The main use of the Modified Allan 

variance (MVAR) is to distinguish between 

white and flicker phase noise (something that 

can be important in analyzing a time transfer 

system).  It is also the basis of the Time vari-

ance. 

 
 

Exercise #5:  Use MVAR to Distinguish Be-

tween White and Flicker PM Noise 

 

1. Generate some white PM noise. 

2. Analyze and plot it with the combination of 

ADEV and MDEV and MDEV alone, the 

latter with a W PM -1.5 slope fit. 
 

                                                 
22

 The Modified Allan variance was devised by D.W. Al-

lan and J.A. Barnes in 1981. 

 
 

 
 

3. Generate some flicker PM noise. 

4. Analyze and plot it with the combination of 

ADEV and MDEV and with MDEV alone, 

the latter with a F M -1.0 slope fit. 
 

 
 

https://ieeexplore.ieee.org/document/1537454
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Note that the MDEV and ADEV are the same at 

unity averaging factor, and that MDEV is small-

er at higher averaging factors.  The ADEV slope 

is the same for these two noise types, and the 

MDEV slopes are different. 
 

 

3.15 Time Variance  
 

See: §5.2.6, [21] 
 

The Time variance
23

, TVAR, is based on the 

Modified Allan variance, and the time deviation, 

TDEV, is its square root.  A scaling factor makes 

TDEV equal to the standard variance of the time 

deviations for W PM noise at the basic sampling 

rate.  Because of the close relationship between 

TDEV and MDEV, an MDEV plot can include 

loci of constant TDEV as shown in Figure 13. 

 

 
 

Figure 13.  MDEV Plot with Lines of Constant 

TDEV 

                                                 
23

 The Time variance was devised by D.W. Allan, Marc 

Weiss, et al in 1990. 

TDEV is an excellent measure of the noise of a 

timing source or time distribution system, for 

example, the 1-day TDEV nicely describes the 

stability of a GPS satellite clock between its dai-

ly updates. 

 

3.16 Time Error Prediction 
 

See: §5.2.7 
 

A time error prediction typically includes terms 

representing the initial synchronization error, 

the linear time error caused by clock frequency 

offset, a quadratic term due to its frequency 

drift, and a TDEV noise estimate versus elapsed 

time.  Depending on the application, additional 

time errors may need to be included due to envi-

ronmental effects (e.g., temperature, barometric, 

etc. sensitivities).  An example of such a time 

error budget would be for a GPS disciplined os-

cillator during holdover [47].  

 

3.17 Hadamard Variance  
 

See: §5.2.8, [17] 
 

The Hadamard variance
24

, HVAR, and its 

square root, the Hadamard deviation, HDEV, is 

a 3-sample version of the 2-sample Allan vari-

ance
25

.  As such, it extends its ability to handle 

more divergent noise Random Walk FM (=-3) 

and Random Run (=-4) FM noise, and it is in-

sensitive to linear frequency drift. 

 
 

Exercise #6:  HDEV Rejects Frequency Drift 
 

1. In this exercise, we will see how the 

Hadamard deviation rejects linear frequency 

drift. 

2. Normally, one would generate simulated 

noise data with frequency drift in the Noise 

function.  But here we want to start without 

drift and add it later. 

3. Use the Noise function to generate 4096 

points of white FM noise. 

                                                 
24

 Named for Jacques Hadamard (1865-1963), a French 

mathematician.  The Hadamard variance was introduced 

to the frequency control field by R.A. Baugh in a 1971 

FCS paper. 
25

 The Picinbono variance is a similar 3-sample statistic. 

 

 

https://ieeexplore.ieee.org/document/177488
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Hadamard.html
https://ieeexplore.ieee.org/document/1536800
https://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=3&cad=rja&uact=8&ved=2ahUKEwjzjo2C8cnnAhUHw1kKHTKDDecQFjACegQICBAB&url=http%3A%2F%2Fdocuments.irevues.inist.fr%2Fbitstream%2Fhandle%2F2042%2F2073%2F005.PDF%2520TEXTE.pdf%3Fsequence%3D1&usg=AOvVa
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4. Observe the resulting W FM noise data in its 

status plot. 
  

 
 

5. Activate the Tabs feature and save this cur-

rent drift-free frequency data in case you 

want to use it again. 

6. Perform an Overlapping ADEV Run and 

plot those drift-free results 
 

 
 

7. Open the Scale function and use it to add a 

drift slope of 0.01 to the frequency data. 

8. Observe the resulting frequency drift in its 

status plot. 
 

 
 

9. Perform an Overlapping ADEV Run and 

plot those results.  Note that the ADEV in-

creases at longer tau as 
+1

 because of the 

drift. 
 

 
 

10. Perform an Overlapping HDEV Run and 

plot those results.  Note that the HDEV has 

rejected the frequency drift, and that it is es-

sentially the same as the ADEV results 

without drift. 
 

 
 

11. If you wish to revisit the drift-free data, be 

sure to save the current drift data in another 

tab. 
 

 

Why not use the Hadamard variance all the time 

since it gives essentially the same result as the 

Allan variance and you don’t have to worry 

about the effect of (linear) frequency drift?  

Well mostly because the Allan variance (devia-

tion) is what is generally specified and is the 

more familiar.  Plus it is better practice to deal 

with any drift separately.  But more importantly, 

ADEV is a more efficient estimator, providing a 

higher-confidence result. 

 

There are original, Overlapping. Modified and 

Total versions of the Hadamard variance; we 

used the overlapping version above since it is 

preferred over the original one that provides less 

confidence.  The Modified Hadamard variance 

is a 3-sample statistic with phase averaging sim-

ilar to the Modified Allan variance (see below) 

and the Total Hadamard variance is a version of 

it that has higher confidence at long averaging 

factors (see below). 

 
 

Exercise #7:  HDEV Has Wider Error Bars 

Than ADEV 
 

1. Generate some test noise 

2. Calculate and plot ADEV 
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3. Calculate and plot HDEV 
 

 
 

4. Observe that HDEV has wider error bars. 
 

 

3.18 Overlapping Hadamard Vari-

ance 
 

See: §5.2.9 
 

Like the Overlapping version of the Allan vari-

ance, the Overlapping Hadamard variance uses 

fully overlapping samples to estimate that statis-

tic with higher confidence. 

 

3.19 Modified Hadamard Variance 
 

See: §5.2.10 
 

Like the Modified version of the Allan variance, 

the Modified Hadamard variance uses phase av-

eraging in its computation to distinguish be-

tween white and flicker PM noise, to handle 

more divergent noise types, and to reject linear 

frequency drift. 

 

3.20 Total Variance 
 

See: §5.2.11, §5.11,  [23] 
 

The Total variance
26

 is a higher-confidence es-

timator of the Allan variance, offering useful 

results at averaging factors that extend to a third 

of the record length by reflecting the data at its 

ends.  It is a biased estimator for Flicker FM 

(=-1) and random walk FM (=-2) noise.  One 

should not be concerned about using a biased 

estimator like the Total variance because the 

Stable32 software that supports its calculation 

also includes bias corrections
27

.  There are also 

Total versions of the Modified, Time and 

Hadamard variances (see below). 

 

The Total deviation is included in the analysis 

techniques recommended in IEEE Std 1139-

1999 [6], but is not often used, mainly because 

most users are more familiar with the Allan and 

Hadamard deviations, and the newer Thêo1 sta-

tistic is even more advantageous. 

 

Try these Total and Thêo1 stability measures 

with your own clock data and see for yourself 

how they can improve the confidence and ex-

tend the range of your analyses. 

 

3.21 Modified Total Variance  
 

See: §5.2.12, §5.12, [51] 
 

The Modified Total variance is a higher-

confidence estimator of the Modified Allan var-

iance.  It accomplishes that by extending the 

data at both ends by uninverted even reflection, 

allowing averaging factors up to one-third of the 

record length. 

 

3.22 Time Total Variance 
 

See: §5.2.13 
 

The Time Total variance is a higher-confidence 

estimator of the Time variance based on the 

Modified Total variance. 

 

                                                 
26

 The Total variance was devised by D.A. Howe. 
27

 These bias corrections generally depend on the noise 

type, and that determination is made at each averaging 

factor during a stability analysis. 

https://ieeexplore.ieee.org/document/483917
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3.23 Hadamard Total Variance  
 

See: §5.2.14, [24], [50] 
 

The Hadamard Total variance is a higher-

confidence estimator of the Hadamard variance.  

It accomplishes that by extending the data at 

both ends by uninverted even reflection, allow-

ing averaging factors up to one-third of the rec-

ord length. 

 

3.24 Thêo1  
 

See: §5.2.15, §5.13, [54] 
 

The Thêo1
28

 statistic is another, even higher-

confidence estimator of the Allan variance, sup-

porting results out to three-quarters of the record 

length, where 10 terms contribute to the result.  

It is a biased estimator for all except W FM 

noise, and an empirical correction factor is ap-

plied for the other noise types.  

 

 
 

Figure 14.  ADEV and Thêo1 Compared 
 

Thêo1 provides useful stability results at larger averaging 

factors. 

 

The information provided by a sigma-tau plot is 

logarithmic in time.  It is one thing to add an-

other point to a 1-second data run by doubling 

the 1-hour measurement time and quite another 

to do so for the hourly data of a 1-month dura-

tion.  The latter involves significant monetary 

and schedule costs, and is where the advantage 

if the Thêo1 statistic becomes most apparent. 

 

                                                 
28

 The Thêo1 and ThêoH statistics were devised by D.A. 

Howe in 2004-2006. 

3.25 ThêoH 
 

See: §5.2.16, §5.14 
 

The ThêoH statistic is a hybrid of the Overlap-

ping Allan variance and Thêo1, the latter used 

to extend the analysis seamlessly to longer aver-

aging factors out to nearly 75% of the record 

length.  An example of a ThêoH stability plot is 

shown in Figure 15 where a 30-day run provides 

a stability value at 21 days
29

. 

 

 
 
 

Figure 15.  ThêoH Stability Plot for a 

 GPS Satellite Rubidium Clock 
 

The Thêo1 statistic provides a stability estimate out to 

71% of the 30-day record length. 
 

 

3.26 MTIE  
 

See: §5.2.17, [52], [53] 
 

The Maximum Time Interval Error, MTIE, is a 

different sort of statistic since it is based on the 

maximum value of the time error as a window is 

passed through the phase data.  The MTIE sta-

tistic is mainly used within the telecommunica-

tions industry.  MTIE is a peak deviation not 

closely associated with clock noise types, is sen-

sitive to a single extreme value, and is computa-

tionally quite intensive
30

. 

                                                 
29

 This stability plot is actual data for an Excelitas GPS III 

Rb clock during its 30-day factory acceptance test.  Be-

cause it is still stabilizing, the frequency drift is removed 

by a diffusion fit, which is an excellent model for the ag-

ing of its Rb physics package.  It displays an 8.5x10
-13


-1/2
  

W FM noise characteristic that extends over 3 weeks 

without reaching any apparent “flicker floor”. 
30

 The Stable32 Run/MTIE function includes a faster ap-

proximate MTIE calculation option. 

https://ieeexplore.ieee.org/document/1275095
https://www.nist.gov/publications/theoh-new-high-confidence-hybrid-statistic-improves-allan-diviation
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3.27 TIE rms 
 

See: §5.2.18 
 

The rms Time Interval Error is another measure 

of time variability, the rms value of the 1
st
 dif-

ferences of the phase data.  For no frequency 

offset, it is approximately equal to the standard 

deviation of the fractional frequency fluctua-

tions multiplied by the averaging time.  TDEV 

is a better measure of time deviation for diver-

gent noise sources. 

 

3.28 Integrated Phase Jitter and 

Residual FM 
 

See: §5.2.19 
 

The integrated phase jitter and residual FM are 

alternative ways to express phase and frequency 

jitter.  The former integrates the phase noise 

over a certain bandwidth to produce a phase jit-

ter value in rms radians.  That is most often 

done using a power law noise model, often in a 

spreadsheet.  The residual FM is similar, giving 

a frequency jitter value of rms Hz.  

 

3.29 Dynamic Stability  
 

See: §5.2.20, [41] 
 

The Dynamic Stability
31

, DVAR function pro-

duced a 3D ADEV or HDEV plot that shows the 

variation in stability as a function of the data 

point, showing changes in log sigma versus log 

averaging factor as a function of time as an 

analysis window is moved through the data set. 

 
 

Exercise #8:  Try the Dynamic AVAR Func-

tion 
 

1. Generate 512 points of W FM noise with an 

ADEV of 1.0 (or some other simulated noise 

of your choosing). 

2. Save the resulting frequency data. 

3. Generate another set of the same type of 

noise but with twice the ADEV. 

4. Use the Add function to add on the first set 

of data. 

5. Plot the composite data.  Clearly, the noise 

                                                 
31

 The Dynamic Allan variance was devised by L. 

Galleani and P. Tavella in 2005. 

increases at the middle. 
 

 
 

6. Launch the DVAR (Dynamic AVAR) func-

tion and plot the dynamic stability using the 

defaults.  As expected, the stability changes 

at the middle of the plot. 

7. You can experiment with different window 

and step sizes.  Here smaller ones (50 and 5) 

appear to better resolve this sharp change 
 

 
 

 

 

3.30 Dead Time  
 

See: §5.6, §5.8, §5.9, §5.15, [11] 
 

Dead time between successive frequency meas-

urements can affect the results of a stability 

analysis. In cases of modest dead time, the bias 

can be removed by applying the Barnes B2 and 

B3 bias ratios (see Figure 16), and this can be 

done automatically during a Stable32 Run. Fre-

quency measurements with extreme dead time 

(e.g., hourly 100 second measurements) are 

suitable only for drift determination, not ADEV 

http://www.wenzel.com/documents/spread1.htm
https://ieeexplore.ieee.org/document/1275096
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analysis.  Dead time is not a factor for phase 

measurements. 

 

 
 

Figure 16.  Dead Time Correction 
 

The bias caused by measurement dead time can be cor-

rected using the Barnes B2 and B3 ratios, 

 

3.31 Unequally-Spaced Data  
 

See: §5.16, [11] 
 

Unevenly-spaced data is a problem for time se-

ries analysis.  If the data are timetagged, and on 

a uniform grid, it is possible to automatically 

insert gaps to regularize the data
32

.  That is ef-

fective only if the number of gaps is reasonable, 

and periodic gaps can cause strange results in an 

ADEV analysis.  If the data are only slightly 

unevenly-spaced, that can simply be ignored, or 

the data can be forced to a uniform grid. 

 

3.32 Two Identical Units 
 

It is common to measure the stability of two 

nominally-identical frequency sources against 

each other, especially when a more stable refer-

ence is not available.  In that case, it is reasona-

ble to assume that their noise powers contribute 

equally, and to apply a correction factor of 1/2 

to obtain the stability of one unit
33

. 

 

3.33 Three-Cornered Hat  
 

See: §10.14, [18] 
 

                                                 
32

 See the Stable32 Regularize function. 
33

 The Stable32 Run function supports this correction. 

In the case multiple, not necessarily identical, 

units, the 3-cornered hat method
34

 can be used 

to estimate the stabilities of the individual units. 
 

3.34 Autocorrelation Function 

(ACF)  
 

See: §5.5.3, §5.5.4, [1], [15] 
 

Autocorrelation plots are seldom used to present 

final stability analysis results, but they can pro-

vide valuable insight into clock behavior, and 

the autocorrelation function serves as a theoreti-

cal underpinning for frequency stability analysis 

techniques
35

.  A time-dependent autocorrelation 

implies non-stationarity.  Inspection of an auto-

correlation plot shows the extent that the adja-

cent data are correlated, indicates their power 

law noise type, and can show periodicities, as 

shown in the following exercise.  In fact, the lag 

1 autocorrelation function can be used to esti-

mate the power law noise type quite accurately 

(see [1]).  A lag 1 scatter plot shows the disper-

sion of the adjacent values around the diagonal 

and shows if the data are quantized (see Exer-

cise #8). 

 
 

Exercise #9:  Try the Autocorrelation Func-

tion 
 

1. Generate or read W FM noise frequency da-

ta. 

2. Open the Autocorrelation (ACF) function, 

activate the Lag 1 scatter plot insert, and 

plot the autocorrelation function. 
 

                                                 
34

 The term "3-cornered hat" was coined by J.E. Gray. 
35

 The ACF and the power spectrum are related by the 

Fourier transform, and they are mathematically equiva-

lent. 
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3. Repeat for F FM frequency data. 
 

 
 

4. Repeat for RW FM frequency data. 
 

 
 

 
 

Exercise #10:  Use an Autocorrelation Scatter 

Plot to Show Data Quantization 
 

1. Generate quantized data by exceeding its 

double-precision dynamic range.  Start with 

4096 points of simulated W FM frequency 

data with a nominal value of 1.0. 

2. Use the Scale function to add +3e-15. 

3. Use the Scale function to add -3e-15. 

4. Launch the Autocorrelation (ACF) function. 

5. Plot the ACF and its lag 1 Scatter diagram. 
 

 
 

6. The ACF plot shows that the noise is uncor-

related even at lag 1 indicating that it is 

white, and the estimated alpha confirms that 

it is white FM. 
 

 
 

7. The scatter plot shows the 0.5 data quantiza-

tion. 
 

  

3.35 Histogram 
 

See: §5.17 
 

It can sometimes be useful to examine clock da-

ta with a histogram, perhaps to look for bimo-

dality or quantization.  A histogram works best 

when there is little or no slope to the data.  Sta-

ble32 can fit the histogram to a normal distribu-

tion. 
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Figure 17.  Histogram of W FM Frequency Data 

 

3.36 Frequency Offset 
 

See: §5.18 
 

The fractional frequency offset of a source with 

respect to the measurement reference is equal to 

the average frequency. It can be estimated from 

phase data by any of the following three meth-

ods: 
 

1. A least-squares linear fit to the phase data.  This is 

optimum for white PM noise. 

2. The average of the 1
st
 differences of the phase data.  

This is optimum for white FM noise. 

3. The difference between the first and last points of the 

phase data divided by their time span.  This can be 

used to match the two endpoints. 

 

3.37 Frequency Drift  
 

See: §5.19, [55] 
 

Frequency drift (see Drift Analysis, Modeling, 

and Removal) refers to the change in average 

frequency versus time and includes the frequen-

cy aging of the source due to internal effects 

plus those caused by environmental and other 

factors. 

 

3.38 Performing a Stability Analy-

sis 
 

See: §10 
 

Section 10 of the Handbook has subsections that 

delineate the main considerations and steps for a 

complete frequency stability analysis as follows: 

 

1. Data Precision 

2. Preprocessing 

3. Gaps, Jumps and Outliers 

4. Gap Handling 

5. Uneven Spacing 

6. Analysis of Data with Gaps 

7. Phase-frequency Conversions 

8. Drift Analysis 

9. Variance Analysis 

10. Spectral Analysis 

11. Outlier Recognition 

12. Data Plotting 

13. Variance Selection 

14. Three-Cornered Hat 

15. Reporting 

 

In many cases, one goes immediately to a vari-

ance analysis, but hopefully only after plotting 

the data to visually confirm that it has sufficient 

precision, is evenly spaced without gaps, jumps 

or outliers, and does not require prior drift re-

moval.  That visual inspection is generally best 

done on frequency data.  One must also consider 

what variance type is best suited to the purpose 

at hand, and whether the data needs spectral 

analysis or frequency domain characterization.  

Some situations may call for post-processing by 

combining stability results at different sampling 

rates or the use of cross-correlation or three-

cornered hat processing.  Finally, the results are 

incorporated into a report to document and in-

terpret them. 

 

There is an example of a typical analysis proce-

dure at the end of the User Manual
36

. 

 

3.39 Preprocessing 
 

See: §10.2 
 

As mentioned above, the first steps in perform-

ing a stability analysis may involve prepro-

cessing operations to prepare the phase or fre-

quency data for detailed analysis.  Generally, 

these steps are: 

 

1. Visual inspection of the data 

2. Outlier removal 

3. Drift analysis and removal 

 

                                                 
36

 See pages 293-294 and 299-302. 
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3.40 Drift Analysis, Modeling, and 

Removal  
 

See: §5.19, §5.20, [8], [31], [55] 
 

The purpose of a frequency drift analysis can be 

either to determine the amount of drift or to 

model and remove it from the data (or both).  

Good practice usually dictates the removal of 

deterministic frequency drift before quantifying 

the stochastic noise.  The decision whether drift 

removal is needed can usually be made by in-

spection of a plot of the frequency data.  In 

some applications, the need for drift removal is 

avoided by using the Hadamard variance
37

.  A 

linear model for frequency drift (or equivalent-

ly, a quadratic phase model) is the most obvious 

and most widely used, but other models such as 

log and diffusion fits are sometime better.  The 

goal of removing drift from frequency data is to 

obtain white residuals to the greatest extent pos-

sible. 

 

Stable32 supports a variety of drift models for 

either phase or frequency data as shown in Ta-

ble 3, and it also includes polynomial fits and 

the ability to use an arbitrary fit equation.  High-

order polynomial fits are discouraged as non-

physical and fragile.  The most useful non-linear 

fits have proven to be a log and diffusion (t) 

fits to model a stabilization or actual gas diffu-

sion process. 

 
 

Table 3.  Stable32 Drift Analysis Methods 
 

Data 

Type 

Fit Method Noise 

Model 

Phase Quadratic Fit W PM 

Average of 2
nd

 Differences RW FM 

3-Point Fit W & RW FM 

Greenhall All 

Linear Fit Freq Offset 

Average of 1
st
 Differences Freq Offset 

Phase Endpoints Freq Offset 

Freq Linear Fit W FM 

Bisection Fit W & RW FM 

Log Fit Stabilization 

Diffusion Fit Diffusion 

Autoregression AR(1) 

 

Four methods are available for modeling the 

frequency drift of phase data: 

                                                 
37

 For example, GPS Rb satellite clocks. 

1. The first method is a standard least-squares quadratic 

fit to the phase data.  This method is optimum for 

white PM noise, and is the one most commonly used. 
2. The second method is the average of the 2

nd
 differ-

ences of the phase data.  This method is optimum for 

random walk FM noise. 
3. The 3-Point method uses the 3 points at the start, 

middle and end of the phase data.  It is the equivalent 

of the bisection method for frequency data. 
4. The Greenhall method uses 4 points at the start, 10%, 

90% and ends of the phase data.  It is applicable to all 

noise types.  

Three methods are available for determining the 

frequency offset of phase data: 

1. The first method is a least-squares linear fit to the 

phase data.  This method is optimum for white PM 

noise. 
2. The second method is the average of the 1

st
 differ-

ences of the phase data.  This method is optimum for 

white FM noise. 
3. The third method simply uses the difference between 

the first and last points of the phase data.  This meth-

od is intended mainly to match the two endpoints. 

Five methods are available for modeling the 

frequency drift of frequency data: 

1. The first method, the default, is a least squares linear 

regression to the frequency data.  This is the optimum 

method for white FM noise. 
2. The second method computes the drift from the fre-

quency averages over the first and last halves of the 

data.  This bisection method is optimum for white 

and random walk FM noise. 
3. The third method, a log model of the form (see MIL-

PRF-55310), applies to the frequency stabilization of 

crystal oscillators and rubidium frequency standards. 
4. The fourth frequency drift method is a diffusion (t) 

model that has been found effective for high-

performance rubidium frequency standards. 
5. In addition, there is an autoregression frequency drift 

method that can fit and optionally remove AR(1) au-

toregressive noise from the data.  That method calcu-

lates the lag 1 autocorrelation coefficient, r(1), for a 

selected averaging factor and uses it to remove a 

first-order AR(1) noise process. It is useful for 

prewhitening data before a jump analysis. 

 

Exercise #11: Frequency Drift Model 
 

1. Generate a set of white and flicker FM noise 

plus linear frequency drift using the Noise 

function.  Simulate a medium-performance 

rubidium frequency standard having a 1-

second W FM level of 1e-11 and a flicker 

https://nepp.nasa.gov/DocUploads/1F3275A6-9140-4C0C-864542DBF16EB1CC/MIL-PRF-55310.pdf
https://nepp.nasa.gov/DocUploads/1F3275A6-9140-4C0C-864542DBF16EB1CC/MIL-PRF-55310.pdf
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floor of 2e-13, plus a frequency drift of 5e-

13 per day.  Use a 100 second sampling in-

terval (tau) which makes the drift per tau 

equal to about 5.787e-16.  65,384 points will 

represent a time span of about 75 days and 

support ADEV analysis out to about 10
6
 se-

conds. 

2. Plot and annotate the resulting frequency 

data plot, including a linear fit. 
 

 
 

3. The linear fit is about 5.76e-16 per 100 se-

cond tau interval as expected. 

4. Average the frequency data by a factor of 36 

to a 1 hour tau to better show the flicker 

noise.  Also add a message showing the dai-

ly drift. 

 

 
 

5. Plot the ADEV table for the 100 second da-

ta. 
 

 
 

6. Note that the reported linear frequency drift 

is 4.98e-13/day, very close to that expected. 

7. Plot and annotate the ADEV results. 
 

 
 

8. The ADEV plot shows the W FM level of 

about 1e-12 at 100 seconds, a stability floor 

that approaches 2e-13, and frequency drift 

with a +1 slope at longer tau. 

9. Use the Drift function to calculate the linear 

frequency drift. 
 

 
 

10. The reported linear frequency drift is about 

5.76e-16 per 100 second tau interval or 

about 4.97e-13 per day, again as expected. 

11. Repeat using the Bisection drift method. 
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12. The Bisection drift value is about 5.75e-16 

per tau interval, essentially the same as for 

the linear fit. 
 

 

The Stable32 Plot function provides access to a 

number of fitting methods via its Options/Fit 

Type control.
38

 

  

3.41 Outliers  
 

See: §10.3, [11], [13], [39] 
 

It is possible to have outliers in a set of phase or 

frequency data, and those must be removed be-

fore performing a stability analysis.  Outliers are 

best handled as frequency data, and the first step 

(as in any analysis) is to inspect the data for any 

problems. 

 

A gross outlier is easy to spot since it will dom-

inate the data plot, and it is quite easy to remove 

it by using the Edit function and replacing it 

with a value of 0.  Stable32 treats all frequency 

zero values and interior phase zero values as 

gaps (first and last zero phase values are al-

lowed).  The zeros maintain the continuity of 

the data samples.  If a actual value of zero is 

needed, a value of (say) 1e-99 can be used for it. 

 

But a better way to identify outliers is to use the 

Check function which automatically finds and 

optionally removes outliers subject to a certain 

criterion based on the Median Absolute Devia-

tion (MAD), a robust way to handle them. 

 

                                                 
38

 For phase data, these are Quadratic, Average, Polyno-

mial, and Function.  The latter two lead to Poly Order and 

x(t)= settings respectively.  For frequency data, these are 

Line, Log, Diffusion, Average, Polynomial, Function, and 

Jumps.  The latter lead to Poly Order, y(t)=, and Config-

ure respectively.  Configure opens a Frequency Jump De-

tection Parameters dialog box. 

Good practice requires that all outliers removed 

be noted and explained to the extent possible. 

 
 

Exercise #12:  Find and Remove Outliers 
 

1. In this exercise, we will see how to identify 

and remove outliers. 

2. Generate 512 points of simulated white FM 

noise data with the Noise function. The 

magnitude should be set to 1.0, and the tau 

can be left at 1. 

3. Select the frequency data. 

4. Open the Edit function and scroll to the 

middle of the frequency data (say point # 

256) and click on it. 

5. Change the value of the middle point to 10, 

press Enter, and then OK. 

6. Use the Plot function to plot the frequency 

data.  Note the outlier at the center. 

Note that the data filename extension has 

been incremented to indicate that it has 

changed (phase data extensions are even, 

frequency extensions are odd). 
 

 
 

7. Launch the Check function, press Calc, and 

note that one outlier is detected.  Note also 

that the point at about #470 is somewhat be-

low the outlier threshold of about 6.6. 
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8. Try changing the Sigma Factor to see how it 

affects the outlier detection sensitivity. 

9. Select Remove Outlier/All and press Calc to 

remove the outlier. 

10. Explore multiple and other outlier options as 

desired.  See how outliers affect the Statis-

tics. 
 

 

3.42 Jumps  
 

See: §10.3, [19], [20], [32] 
 

Jumps occur in phase and frequency data in the 

form of spikes and transients, back-and-forth 

excursions, steps, lurches, etc.  These are gener-

ally more obvious in frequency data where as a 

jump rather than a change in phase slope.  In 

interpreting them, one needs to keep in mind 

their integral/derivative relationship to help un-

derstand their underlying cause.  In some cases, 

there is a obvious frequency jump, perhaps as-

sociated with a change in a device monitor sig-

nal; in other cases divergent noise can show a 

sudden lurch that only appears to be a jump.  

Besides an abrupt phase or frequency change, a 

frequency source can also experience a sudden 

change in its stability.  Any of these phenomena 

can be a one-time isolated event, occur in bursts 

or a periodic way, or with some other pattern.  

One also needs to distinguish between the unit 

under test, the reference and the measuring sys-

tem as the cause of the anomaly. 

 

Jump analysis can be done by visual examina-

tion of a phase or frequency record, by some 

automated process, or a combination of the two. 

Some such algorithms involve comparing the 

mean values of two adjacent windows that are 

moved through the data, while others use cumu-

lative sum charts and other similar techniques. 

Some of these methods require a data model 

whose parameters must be determined, while 

other methods are non-parametric. They can 

variously detect outliers, transients, level shifts 

and changes in variance for data having differ-

ent noise characteristics and trends 

 

Besides phase and frequency plots, Stable32 has 

a jump detection feature, and also supports a 

dynamic stability function that can show ADEV 

or HDEV stability changes. 

 

Exercise #13: Frequency Jumps 
 

1. Start with the same simulated Rb clock 

noise as Exercise #11 but with the linear 

drift removed, as shown in the following 1 

hour tau frequency data plot.  The white 

flicker FM noise has significant lurches but 

no obvious abrupt jumps. 
 

 
 

2. Nevertheless, the default BLKAVG jump 

detection function identifies one with its 

Sigma Factor=3.00.  Note that the thin green 

lines indicate the detection blocks and the 

thick vertical line indicates the jump.  The 

detection parameters are shown below the 

plot. 
 

 
 

3. No jump is detected at Sigma Factor=4.00. 
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4. A simulated jump can be inserted by adding 

an offset to part of the frequency data.  Let’s 

add an offset of 1e-12 in the middle at point 

908.  This is probably at about the threshold 

that one would detect a jump by eye, about 

half the peak-to-peak scatter but quite an 

obvious shift in the average. 
 

 
 

5. The jump is detected nicely, but we did have 

to adjust the sigma threshold up a bit to 

avoid a “false positive”. 
 

 

3.43 Filtering  
 

See: [34] 
 

Frequency domain filtering is seldom applied to 

time domain phase or frequency data.  Low 

pass, band pass, high pass, or band stop filtra-

tion can nevertheless be performed as a prepro-

cessing or investigative step as part of a fre-

quency stability analysis. 

 
Low pass filtration can be useful for removing 

high frequency noise that may otherwise obscure 

underlying variations in the data. Its effect is simi-

lar to data averaging, but does not lengthen the 

sampling interval or reduce the number of data 

points. 

  

High pass filtration can be useful for removing 

large amplitude low frequency fluctuation in the 

data due to divergent noise, drift or wandering in 

order to better see and analyze the high frequency 

noise. This is particularly effective when the drift 

or wandering does not fit a function to allow its 

removal. 

  

Band pass filtration can be useful for analyzing 

the amplitude variations of a discrete interfering 

component. Its function resembles that of a classic 

wave analyzer. 

  

Band stop filtration can be useful for removing a 

discrete interfering component. By repeating this 

operation, multiple components may be removed 

without significantly affecting the underlying be-

havior. 

 

3.44 Vibration 
 

See: §11.5 
 

Mechanical vibration can have a significant ef-

fect on the stability of a frequency source.  This 

is particularly true for a quartz crystal resonator 

subjected to vibration [42].  The Stable32 Vibra 

function can calculate the level of spectral com-

ponents caused by sinusoidal or random vibra-

tion applied to a crystal oscillator, based on nar-

rowband FM theory that relates the level of si-

nusoidal frequency modulation and the resultant 

discrete spectral sidebands. 

 

 
 

 
 

 
 

Spurious Level 

for crystal ex-

posed to sinusoi-

dal vibration. 

Phase noise for 

crystal exposed 

to random vibra-

tion. 

FM sideband 

level for a certain 

FM deviation 

and rate. 
 

Figure 18. 

Stable32 Vibra Function Calculations 
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The ADEV of an oscillator subjected to sinusoi-

dal FM will be degraded in a cyclic pattern as 

shown in Figure 19.  This behavior can be simu-

lated with the Noise function. 

 

 
 

Figure 19.  ADEV Plot with Vibration 
 

Vibration-induced ADEV degradation of a crystal oscilla-

tor having a 1 second white PM noise level of 1x10
-12

 and 

an acceleration sensitivity of 1x10
-9

/g exposed to sinusoi-

dal vibration of 1g peak at 20 Hz.  The W PM 
-1

 noise 

envelope is the lower green line and the vibration re-

sponse 
-1

 envelope is the upper green line whose peaks 

occur at the modulation half cycles.  

 

4 MEASUREMENTS & 

REPORTING 
 

We present some suggestions for conducting 

and reporting clock measurements. 

 

4.1 Measurements  
 

See: §9, [37], [38], [40] 
 

Except for simulations, clock measurements are 

obviously needed before a frequency stability 

analysis can be conducted.  That means that a 

suitable measurement system must be available, 

along with an adequate reference, and that ap-

propriate data must be captured and stored.  

Those matters are beyond the scope of this tuto-

rial but are covered in Reference [40] and many 

other places.  The resolution and noise floor of 

the measuring system are major considerations. 

 

4.2 Clock Data 
 

See: §9.6, §9.7 
 

Phase, rather than frequency, data are preferred, 

and they generally should be formatted as dou-

ble-precision exponential ASCII numeric-only 

values, one datum per line.  Timetags are desir-

able (see below), preferably in the first, comma 

or space-delimited, column. The preferred units 

are time in seconds for phase data and dimen-

sionless fractional frequency for frequency data. 

 

When dealing with large amounts of clock data, 

it is recommended that they be stored in a for-

mal database for easy retention and retrieval. 

 

4.3 Timetags 
 

See: §9.8 
 

Phase and frequency data often needs to be 

timetagged or dated in some way.  Within the 

time and frequency community, the 5-digit 

Modified Julian Date (MJD) is the most widely 

used format, having the convenient properties of 

a strictly numeric value that covers half of the 

19
th

 and into the 22
nd

 centuries.  It commonly 

includes a 5-digit decimal part that conveys time 

down to 1 second.  The MJD is based on the 

longer Julian Date, the # of days since noon on 

January 1, 4713 BC, where MJD = Julian Date – 

2,4000,000.5.  It starts at zero at midnight on 

November 17, 1858.  The Stable32 program in-

cludes a number of features related to MJD 

timetags and corresponding date conversions, as 

well as a MJD Calendar (see its Help file and 

User Manual for more details). 

 

It is easy to determine the current MJD by simp-

ly adding 40687 to the current UNIX computer 

time in seconds divided by 86400, where time 

starts at 0 hours on January 1, 1970.  For exam-

ple, in Python: 

 
import time 

….. 

# Get current MJD 

now = time.time() 

mjd = 40587.0 + now/86400.0 

 

MJD timetags are usually written in 5.5 format 

as the 1
st
 column of phase or frequency data, 

one row per datum.  They are the recommended 

way to timetag such data. 
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4.4 Annotating Plots 
 

See: §10.15 
 

The plots shown in these examples are of the 

quick-and-dirty type that you’ll get when doing 

the exercises.  Real ones for a serious analysis 

can be more refined and either include addition-

al information to document the results, or em-

phasize simplicity for a presentation.  For the 

former, you’ll want to include the header 

(date/time, points, tau, filename) and footer (or-

ganization name), add appropriate lines with 

their fit parameters, add notes, choose meaning-

ful filenames, and store the data for future use 

(see Figure 14)
39

.  For the latter, you’ll want to 

minimize clutter for easier visibility.  It is very 

easy to copy a plot and paste it into a document 

(the bitmap format is generally best).  A small 

plot pasted into a document can be readily ex-

panded on-screen for better readability. 

 

4.5 Reporting 
 

See: §10.15 
 

Good practice dictates that the results of a sig-

nificant frequency stability analysis be docu-

mented in a report
40

.  Besides the usual items 

that describe the purpose, methodology, and re-

sults of the analysis, it is wise to retain the raw 

data in case it is needed again. 

 

4.6 Other Examples  
 

See: §11, [35] 
 

Section 11 of the Handbook has several Case 

Studies showing various aspects of frequency 

stability analysis. 
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 One can even insert a small phase or frequency plot into 

a stability plot.  See the Plot Inserts Help topic. 
40

 Many Stable32 functions contain a Copy button to save 

the results to the Clipboard.  Plots may be captured with 

the Edit/Copy(Bitmap) command.  Most of the Convert 

options are now obsolete, but the bitmap image can be 

converted to another format (e.g., .png) by a Paint-type 

utility program.  Clicking on a saved .tkf plot file will 

launch the Play utility to replay them. 

5 CONCLUSIONS 

 
We conclude by mentioning some leading con-

tributors to the field of frequency stability anal-

ysis, and some suggestions for further study (see 

also Footnote 5). 

 

5.1 Leaders of Frequency Stability 

Analysis 
 

This tutorial has emphasized the Allan variance 

and related statistics that form the basis of time 

domain frequency stability analysis.  Here we 

recognize some of the leaders of that field (see 

Figure 20).  It’s good to learn about the people 

in this field too. 

 

  
James A. Barnes 

 

David W. Allan 
 

  
Charles A. Greenhall 

 

François Vernotte 
 

  
Marc Weiss 

 

David A. Howe 
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Other contributors include: Claude Audion, 

Richard Baugh, Stefano Bregni, Andy Chi, Len 

Cutler, Jean-Jacques Gagnepain, David Leeson, 

Paul Lesage, Judah Levine, Demetrios Matsakis, 

Don Percival, Enrico Rubiola, Jacques Rutman, 

Sam Stein, Dick Sydnor, Patrizia Tavella, 

Jacques Vanier, John Vig, Fred Walls, Gernot 

Winkler, and many others. 
 

Figure 30.  Leaders of Frequency Stability 

Analysis 

 

5.2 Summary 
 

This document has hopefully served as a “mini-

course” in frequency stability analysis, with the 

Stable32 program as its major teaching tool.  Its 

“textbook”, the Handbook of Frequency Stabil-

ity Analysis, is available from within the pro-

gram with a click, as is its User Manual, and 

those documents contain the math and other de-

tails behind the analysis techniques.  This doc-

ument and those books, in turn, contain many 

references that provide opportunities for further 

study. 
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ACRONYMS AND 

ABBREVIATIONS 
 
ACF Autocorrelation Function 

ADEV Allan Deviation 

AVAR Allan Variance 
AFS Atomic Frequency Standard 

FCS Frequency Control Symposium 

FFT Fast Fourier Transform 
F FM Flicker Frequency Modulation 

F PM Flicker Phase Modulation 

FW FM Flicker Walk Frequency Modulation 
FW PM Flicker Walk Phase Modulation 

GNSS Global Navigation Satellite System 

GPS Global Positioning System 
GPSDO GPS Disciplined Oscillator 

H Hydrogen 

HDEV Hadamard Deviation 
HVAR Hadamard Variance 

Hg Mercury 

IEEE Institute of Electrical and Electronic Engineers 
MAD Median Absolute Deviation 

MJD Modified Julian Date 
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 Mr. Danielson leads a group that maintains and updates 

the Stable32 program. 

NIST National Institute of Standards and Technology 

OCXO Oven Controlled Crystal Oscillator 
OCVCXO Oven Controlled Voltage Controlled Crystal Oscillator 

PLL Phase Locked Loop 

PM Phase Modulation 
PPS Pulse Per Second 

PSD Power Spectral Density 

PTTI Precise Time and Time Interval 
RAFS Rubidium Atomic Frequency Standard 

Rb Rubidium 

RbXO Rubidium Crystal Oscillator 
RF Radio Frequency 

RFS Rubidium Frequency Standard 

RW FM Random Walk Frequency Modulation 
RW PM Random Walk Phase Modulation 

RR FM Random Run Frequency Modulation 

RR PM Random Run Phase Modulation 
SSB Single Sideband 

S/N Signal to Noise 

STS Short Term Stability 
TDEV Time Deviation 

TVAR Time Variance 

T&F Time and Frequency 
UFFC Ultrasonics Ferroelectrics and Frequency Control 

VCXO Voltage Controlled Crystal Oscillator 

W FM While Frequency Modulation 
W PM White Phase Modulation 

XO Crystal Oscillator 
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